Data Quality Mining - Making a Virute of Necessity
نویسندگان
چکیده
In this paper we introduce data quality mining (DQM) as a new and promising data mining approach from the academic and the business point of view. The goal of DQM is to employ data mining methods in order to detect, quantify, explain and correct data quality deficiencies in very large databases. Data quality is crucial for many applications of knowledge discovery in databases (KDD). So a typical application scenario for DQM is to support KDD projects, especially during the initial phases. Moreover, improving data quality is also a burning issue in many areas outside KDD. That is, DQM opens new and promising application fields for data mining methods outside the field of pure data analysis. To give a first impression of a concrete DQM approach, we describe how to employ association rules for the purpose of DQM.
منابع مشابه
Application of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)
Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...
متن کاملClustering and Ranking University Majors using Data Mining and AHP algorithms: The case of Iran
Abstract: Although all university majors are prominent and the necessity of their presences is of no question, they might not have the same priority basis considering different resources and strategies that could be spotted for a country. This paper focuses on clustering and ranking university majors in Iran. To do so, a model is presented to clarify the procedure. Eight different criteria are ...
متن کاملA Novel Method for Selecting the Supplier Based on Association Rule Mining
One of important problems in supply chains management is supplier selection. In a company, there are massive data from various departments so that extracting knowledge from the company’s data is too complicated. Many researchers have solved this problem by some methods like fuzzy set theory, goal programming, multi objective programming, the liner programming, mixed integer programming, analyti...
متن کاملPerformance Evaluation of Knowledge Based Collaborative Filtering Model
Collaborative filtering Recommender systems apply data mining techniques to produce personalized recommender system during the online interaction of active users. These systems use variety of techniques for achieving high success on business, banking, finance and other domains. The fast increase in users and products in recent years produces some of the key issues and challenges for recommender...
متن کاملBig Data Quality: From Content to Context
Over the last 20 years, and particularly with the advent of Big Data and analytics, the research area around Data and Information Quality (DIQ) is still a fast growing research area. There are many views and streams in DIQ research, generally aiming at improving the effectiveness of decision making in organizations. Although there are a lot of researches aimed at clarifying the role of BIG data...
متن کامل